Practical aspects of atmospheric corrosion

Trends, experiences from Europe, experiences from Asia/Africa Policy aspects, costs

History of evidence of effects of air pollutants on materials

- In London an edict was issued in 1306 banning the use of 'sea-coal' as this is particularly high in chlorine
- Since the industrial revolution soiling and degradation of buildings in urban areas has been noticeable and often attributed to the effects of air pollution
- Systematic laboratory exposures in by Vernon in the 1930's revealed the importance of SO₂
- Field exposures in Germany by Schikorr in the 1940's revealed the practical importance of SO₂
- Field exposures in Nigeria by Ambler and Bain in the 1960's revealed the practical importance of chlorides
- Field exposures within the Convention on Long-Range Transboundary Air Pollution (CLRTAP) lead to doseresponse functions in the 1990's

Zinc, Stockholm (Vanadis)

Steel, Kopisty (Czeck Republic)

Corrosion trend

Gas concentration trend

ICP Materials - Test sites

List of test sites

No	Name	Country	Туре	No	Name	Country	Туре
1	Prague-Letnany	Czech Republic	Urban	21	Oslo	Norway	Urban
2	Kasperske Hory	Czech Republic	Rural	22	Borregard	Norway	Industrial
3	Kopisty	Czech Republic	Industrial	23	Birkenes	Norway	Rural
4	Espoo	Finland	Urban	24	Stockholm South	Sweden	Urban
5	Ähtäri	Finland	Rural	25	Stockholm Centre	Sweden	Urban
6	Helsinki-Vallila	Finland	Industrial	26	Aspvreten	Sweden	Rural
7	Waldhof-Langenbrügge	Germany	Rural	27	Lincoln Cathedral	United Kingdom	Urban
8	Aschaffenburg	Germany	Urban	28	Wells Cathedral	United Kingdom	Urban
9	Langenfeld-Reusrath	Germany	Rural	29	Clatteringshaws Loch	United Kingdom	Rural
10	Bottrop	Germany	Industrial	30	Stoke Orchard	United Kingdom	Rural Industry
11	Essen-Leithe	Germany	Rural	31	Madrid	Spain	Urban
12	Garmisch-Partenkirchen	Germany	Rural	32	Bilbao	Spain	Industrial
13	Rome	Italy	Urban	33	Toledo	Spain	Rural
14	Casaccia	Italy	Rural	34	Moscow	Russian Federation	Urban
15	Milan	Italy	Urban	35	Lahemaa	Estonia	Rural
16	Venice	Italy	Urban	36	Lisbon	Portugal	Urban
17	Vlaardingen	Netherlands	Industrial	37	Dorset	Canada	Rural
18	Eibergen	Netherlands	Rural	38	Research Triangle Park	USA	Rural
19	Vredepeel	Netherlands	Rural	39	Steubenville	USA	Industrial
20	Wijnandsrade	Netherlands	Rural				

Bronze corrosion, SO₂ and NO₂ concentrations 1987-1995

Important pollution parameters

	Material	SO ₂	NO ₂	O ₃	H+	Cŀ
	Carbon steel	X			X	
	Weathering steel	X				
	Zinc	X			X	
	Aluminium	X				X
	Copper	X		X	X	
	Cast bronze	X			X	X
	Nickel ^a	X	(X)			
^a sheltered only	Tin ^a			X		(X)
^b unsheltered only	Alkyd/galvanised ^b	X				
	Silicon alkyd/steel ^b	X				
	Sandstone	X			X	
	Limestone	X			X	
	Glass	X	X		X	

Model for multi-pollutant impact and assessment of threshold levels for cultural heritage

Interaction of atmospheric pollutants, meteorological conditions and deposition mechanisms in the process of atmospheric corrosion

Filled fields (): MULTI-ASSESS Unfilled fields: ICP Materials

HNO₃ concentration

Important parameters in the multipollutant situation

Material	т	Rh	SO ₂	NO ₂	O ₃	HNO ₃	PM ₁₀	Rain	рН
carbon steel	Х	Х	Х				Х	Х	Х
zinc	Х	Х	Х			Х		X	X
copper	Х	Х	Х		Х			X	X
bronze	Х	Х	Х				Х	X	X
limestone		Х	Х			Х	Х	X	Х
glass	Х	Х	Х	Х					

Comparison of corrosivity of HNO₃ and SO₂+O₃ in laboratory exposure

Mapping

Base maps

Map of corrosion rate of bronze in Germany

Source: Federal Environmental Agency, Berlin, Germany

Acceptable and tolerable levels, target levels and limit values

- The <u>acceptable level</u> is the maximum level at which an acceptable response occurs. The acceptable response should be based on technical and economic considerations.
- The <u>tolerable level</u> is the maximum level at which a tolerable response occurs. The tolerable response should be based on experiences from restoration / maintenance work for cultural heritage objects.
- A <u>target level</u> is a specified level in a given context which should not be exceeded.
- A <u>limit value</u> is a target level that is legally binding.

Tolerable corrosion and pollution

Tolerable pollution levels in the multipollutant situation

Definition of a tolerable corrosion rate, K_t , depending on use and material, implicitly defines a tolerable multi-pollution situation, which can be reached by reducing one or several of the multi-pollutants:

 $K_t = f_{dry}(T, RH, [SO_2]_t, [HNO_3]_t, ...)$ + $f_{wet}(Rain[H^+]_t)$

Recent information on effects-based approaches for the Protocol reviews

Table 4.0 Effects, important parameters and proposed target levels for materials

Effect	Material	SO ₂	HNO ₃	PM	Tolerable effect	Target SO ₂ level ^a	Target PM10 level
	Zinc	Х	Х		1.1 µm year ⁻¹		
Corrosion	Carbon steel	X		Х	20 μ m year ⁻¹	10 µg m ⁻³	
	Limestone	Х	Х	Х	8 μ m year ⁻¹		
	Painted steel			Х	35% loss of		
Soiling	White plastic			Х	reflectance		15 μg m ⁻³
	Limestone			Х	in 10-15 years		

^athis level will protect about 80% of the areas. For a complete protection, levels of N-pollutants, especially HNO₃ also need to be considered.

Source: MULT-ASSESS Publishable final report, www.corr-institute.se/MULTI-ASSESS

Air Quality Directive 99/30/EC

Limit values of pollutants, µg m⁻³

	SO ₂	NO ₂	PM ₁₀
Urban zones – health effects			
Hourly limit value	350	200	
Daily limit value	150		50
Annual limit value		40	40
Rural areas - ecosystems			
Annual limit value	20	30	

Assessing corrosion costs

Corrosion costs

Specification of a level of corrosion attack where replacement or maintenance is necessary makes it possible to calculate the lifetime, t:

 $K = f_{dry}(T, RH, [SO_2], t) + f_{wet}(Rain[H^+], t)$

Stock at risk + lifetime \Rightarrow Corrosion costs

Sandstone

Estimation of stock at risk

- Inspection (Individual building)
- Building Registers (District/City)
- Identikits (National)
- Allocation to census data (Regional)

External building materials in Stockholm, Sarpsborg and Prague

Amount of material, X

Stock at risk of galvanised steel in Germany in m²/km²

Yearly corrosion cost of galvanised steel in Germany due to pollution (DM/km²)

Reduction of costs due to decreased corrosion damage after execution of the 2nd sulphur protocol (US\$-10⁶)

	Rural areas	Urban areas	Total
Eastern Europe	3 700	2 100	5 800
Western Europe	3 000	700	3 700
Total	6 700	2 800	9 500

Quantification of costs and benefits for cultural heritage

- Difficult to express in monetary terms the loss of objects of cultural heritage
- Indirect method for calculation of costs
 - willingness to pay (contingent valuation method)
- Direct benefits (reduced maintenance etc)
- Indirect benefits (incomes from tourism, increased employment etc)

Rock Carving in Tanum, Sweden

Evidences of high corrosion rates

Results from Europe not transferable

